
Software Engineering

and Architecture

Interface Segregation Principle

Role and Private Interfaces



ISP

• “Students should not use my Father interface”…

• Or ‘do not depend on methods you do not use’

• Example:

CS@AU Henrik Bærbak Christensen 2



Fine-grained Roles

• The ‘more specific’ role is expressed as a Role Interface

• Ala again

– I provide a ‘teacher’ interface (one role interface)

– And a ‘taxpayer’ interface (another role interface)

– Etc.

CS@AU Henrik Bærbak Christensen 3

Martin Fowler



Example

• The FigureCollection in MiniDraw only deals with adding, 

removing, and iterating the collection of Figures in 

MiniDraw

CS@AU Henrik Bærbak Christensen 4

A specific interaction (add+remove) between 
the UI and the Drawing, expressed as the Role 

Interface ‘FigureCollection’



Private Interface

• Role interfaces are often used to enforce more specific 

encapsulation than is possible using private/public 

methods and instance variables…

• Let us make an example, highly inspired by our project…

CS@AU Henrik Bærbak Christensen 5

James Newkirk



Example

• We have a system/framework/Façade which presents 

(x,y) points to outside code, but that out side code must 

never modify the (x,y) values!

• Read-only Role interface is a solution to that.

– Only accessor methods,

no mutator methods…

CS@AU Henrik Bærbak Christensen 6



Example

• However, internal classes inside the Façade of course 

needs to mutate the state of these (x,y) points.

• Let us say that one class needs to translate (dx,dy) points

• Private Interface is a solution to that

CS@AU Henrik Bærbak Christensen 7



Example

• Now the internal, implementing, class of course 

implements both

• That is, if you use ‘getPoint()’ from the outside you only 

get access to ‘getX()’ and ‘getY()’

CS@AU Henrik Bærbak Christensen 8



Example

• Now, an internal PointStrategy can translate points like

• And can be called internally like

CS@AU Henrik Bærbak Christensen 9



Example

• However, a PointStrategy cannot access (x,y)…

• However, of course it is often the case, that we need just 

that.

• Exercise: How do we solve that?

CS@AU Henrik Bærbak Christensen 10



Solution 1:

• Fine-grained solution: Missing accessor methods

– Just add those methods that are missing

• Pro

– Can select just the right set of accessors 

• (here it is both of them, but if read-only had 20, we may just pick the 

two we need).

• Con

– Same methods are now present in two interfaces

CS@AU Henrik Bærbak Christensen 11



Ups?

• Uhum – how does that work in Java?

• StandardPoint must now implement ‘getX()’ twice or???

• Exercise: What happens?

CS@AU Henrik Bærbak Christensen 12



Solution 2:

• Coarse-grained (Lazy) approach: Extend existing

– Just implement both

• Pro

– Less typing

– You can actually Program to an Interface in the façade impl!

• Con

– You get all methods

CS@AU Henrik Bærbak Christensen 13

TranslatablePoint



Mandatory Note

• We have read-only role interfaces for Card and Hero in 

HotStone.

– But Game’s implementation and strategies need to manipulate 

them…

– Use private interfaces for that ☺

• Strategies needs special mutations of Game

– Use private interface(s) for that ☺

• Now you ‘program to an interface’, and avoid hard 

coupling to, say, StandardGame etc.

CS@AU Henrik Bærbak Christensen 14


	Slide 1: Software Engineering and Architecture
	Slide 2: ISP
	Slide 3: Fine-grained Roles
	Slide 4: Example
	Slide 5: Private Interface
	Slide 6: Example
	Slide 7: Example
	Slide 8: Example
	Slide 9: Example
	Slide 10: Example
	Slide 11: Solution 1:
	Slide 12: Ups?
	Slide 13: Solution 2:
	Slide 14: Mandatory Note

