/v

AARHUS UNIVERSITET

Software Engineering
and Architecture

Interface Segregation Principle
Role and Private Interfaces

o ISP

AARHUS UNIVERSITET
« “Students should not use my Father interface”...
* Or ‘do not depend on methods you do not use’

Detfinition: Interface Segregation Principle

In the field of software engineering, the interface segregation principle
(ISP) states that no code should be forced to depend on methods it does
not use. ISP splits interfaces that are very large into smaller and more
specific ones so that clients will only have to know about the methods
that are of interest to them. Such shrunken interfaces are also called role
interfaces.

 Example:

public interface Drawing extends FigureCollection, SelectionHandler ({

}

CS@AU Henrik Baerbak Christensen 2

eV Fine-grained Roles

AARHUS UNIVERSITET
« The ‘more specific’ role is expressed as a Role Interface

Definition: Role Interface

A role interface is defined by looking at a specific interaction between sup-
pliers and consumers. A supplier component will usually implement
several role interfaces, one for each of these patterns of interaction.

" Martin Fowler
« Ala again

— | provide a ‘teacher’ interface (one role interface)
— And a ‘taxpayer’ interface (another role interface)
— Etc.

CS@AU Henrik Baerbak Christensen 3

/v Example

AARHUS UNIVERSITET

* The FigureCollection in MiniDraw only deals with adding,
removing, and iterating the collection of Figures in
M i ni D raW pu?lic interface FigureCollection extends Iterable<Figure= {

* Adds a figure and sets its container to refer to this drawing. If you have
several threads that may call add, scope it by the lock/unlock metheds.
— - . * The Drawing role will render figures in the order they are inserted,
E Add + Remove fi...Click for action |- o| + so if they overlap the LAST added figure will appear on top. Use
S * zOrder method to change ordering.

*

* @param figure

* the figure to add

* @return the figure that was inserted.

*/

Figure add(Figure figure);

JE*
* Removes a figure. If you have several threads that may call add, scope it
by the lock/unlock metheds.

*

* @param figure

* the figure to remove
@return the figure removed

*/

Figure remove(Figure figure);

A specific interaction (add+remove) between

the Ul and the Drawing, expressed as the Role
Interface ‘FigureCollection’

CS@AU Henrik Beerbak Christensen 4

/v Private Interface

AARHUS UNIVERSITET

* Role interfaces are often used to enforce more specific
encapsulation than is possible using private/public
methods and instance variables...

Definition: Private Interface

Provide a mechanism that allows specific classes to use a non-public sub-
set of a class interface without inadvertently increasing the visibility of
any hidden member variables or member functions.

* Let us make an example, highly inspired by our project...

CS@AU Henrik Baerbak Christensen 5

/v

Example
AARHUS UNIVERSITET

 We have a system/framework/Facade which presents

(X,y) points to outside code, but that out side code must
never modify the (x,y) values!

 Read-only Role interface is a solution to that.

— Only accessor methods, L .
public interface Point {
no mutator methods... int getX();
int getY();
}

public interface Facade {
Point getPoint();
}

CS@AU Henrik Baerbak Christensen 6

/v Example

AARHUS UNIVERSITET

 However, internal classes inside the Facade of course
needs to mutate the state of these (x,y) points.

« Let us say that one class needs to translate (dx,dy) points
* Private Interface is a solution to that

public interface TranslatablePoint {
void translation(int dx, int dy);

}

public interface PointStrategy() {
void doSomethingToPoint(TranslatablePoint p);

}

CS@AU Henrik Baerbak Christensen 7

/v Example

AARHUS UNIVERSITET

* Now the internal, implementing, class of course
Implements both

public class StandardPoint implements Point, TranslatablePoint {
[all three methods implemented here]

}

public class MyFacade implements Facade {
StandardPoint point;
Point getPoint() { return point; }

}
« That is, if you use ‘getPoint()’ from the outside you only
get access to ‘getX() and ‘getY()

CS@AU Henrik Baerbak Christensen 8

/v Example

AARHUS UNIVERSITET
* Now, an internal PointStrategy can translate points like

public class Strategyl implements PointStrategy {
void doSomethingToPoint(TranslatablePoint p) {
p.translation(+3, +7);
}
}

* And can be called internally like

strategy.doSomethingToPoint(point);

CS@AU Henrik Baerbak Christensen 9

/v Example

AARHUS UNIVERSITET
« However, a PointStrategy cannot access (X,y)...

public interface TranslatablePoint {
void translation(int dx, int dy);

}

 However, of course it is often the case, that we need just
that.

« Exercise: How do we solve that?

CS@AU Henrik Baerbak Christensen 10

/v Solution 1:

AARHUS UNIVERSITET

* Fine-grained solution: Missing accessor methods
— Just add those methods that are missing

public interface TranslatablePoint {
int getX();
int getY();
void translation(int dx, int dy);

}
* Pro

— Can select just the right set of accessors

» (here it is both of them, but if read-only had 20, we may just pick the
two we need).

 Con
— Same methods are now present in two interfaces

CS@AU Henrik Baerbak Christensen 11

AARHUS UNIVERSITET
« Uhum — how does that work Iin Java?

public interface Point { public interface TranslatablePoint {
int getX(); int getX();
int getY(); int getY();
} void translation(int dx, int dy);
}

public class StandardPoint implements Point, TranslatablePoint {
[all three methods implemented here]

}

« StandardPoint must now implement ‘getX()’ twice or???

« Exercise: What happens?

CS@AU Henrik Baerbak Christensen 12

/v Solution 2:

AARHUS UNIVERSITET

« Coarse-grained (Lazy) approach: Extend existing
— Just implement both

public interface TranslatablePoint extends Point {
void translation(int dx, int dy);

}
* Pro

— Less typing
— You can actually Program to an Interface in the facade impl!

nihlis 1

Translatab ePomt point;

ments Facade {

 Con
— You get all methods

return point; }

CS@AU Henrik Baerbak Christensen 13

/v Mandatory Note

AARHUS UNIVERSITET
 We have read-only role interfaces for Card and Hero In
HotStone.

— But Game’s implementation and strategies need to manipulate
them...

— Use private interfaces for that ©

« Strategies needs special mutations of Game
— Use private interface(s) for that ©

 Now you ‘program to an interface’, and avoid hard
coupling to, say, StandardGame etc.

	Slide 1: Software Engineering and Architecture
	Slide 2: ISP
	Slide 3: Fine-grained Roles
	Slide 4: Example
	Slide 5: Private Interface
	Slide 6: Example
	Slide 7: Example
	Slide 8: Example
	Slide 9: Example
	Slide 10: Example
	Slide 11: Solution 1:
	Slide 12: Ups?
	Slide 13: Solution 2:
	Slide 14: Mandatory Note

